Zeyu Ren is currently a Mechatronics Engineer in the R&D Center at Rokae Robotics, Beijing. His research interests include under-actuated hands, tendon-driven mechanism, series elastic actuators and mechatronics design. In 2019, he received his Ph.D degree in Robotics from Italian Institute of Technology under the supervision of Dr. Nikos G. Tsagarakis. His bachelor degree was obtained in Mechatronics Engineering from Zhejiang University in 2015.
PhD in Robotics, 2019
Italian Insitute of Technology (IIT), Italy
MEng in Mechatronics Engineering, 2015
Zhejiang University (ZJU), China
Developed Cobot xMate CR7 for Industrial Application
Developed General Integrated Actuator (GIA) for Cobots
Developed HERI-II-H under-actuated hand for HyQ-Real robot.
Developed HERI-II-P under-actuated hands for PHOLUS robot.
Developed HERI-II-C under-actuated hand for CENTAURO robot.
Developed a 3-DoF Leg (eLeg) for verfifying energy efficiency and explosive motion.
Developed HERI under-actuatued hand for verifying quasi dexteous and powerful grasping.
Developed small size soccer robots, participated RoboCup as a member in Team ZJUNlict.
In this paper we present a novel implementation of hardware synergies realized on the actuation level by leveraging on a novel adjustable electric actuation topology principle.
This work proposes a novel optimization based controller that can accommodate various quadratic criteria to perform the torque distribution among dissimilar series and parallel actuators in order to maximize the motion efficiency.
This work presents the development, modeling, and control of a three-degree-of-freedom compliantly actuated leg called the eLeg, which employs both series- and parallel-elastic actuation as well as a bio-inspired biarticular tendon.
This paper presents the development of a disaster-response system that consists of the highly flexible Centauro robot and suitable control interfaces, including an immersive telepresence suit and support-operator controls offering different levels of autonomy.
In this letter, we introduce the design of a wheeled-legged mobile manipulation platform capable of executing demanding manipulation tasks, and demonstrating significant physical resilience while possessing a body size (height/width) and weight compatible to that of a human.
This paper presents the design and implementation details of an efficient robotic leg (eLeg) prototype in which series-elastic actuation is combined with adjustable parallel compliance to significantly improve its energy efficiency.
This paper introduces the design of a novel under-actuated hand with highly integrated modular finger units, which can be easily reconfigured in terms of finger arrangement and number to account for the manipulation needs of different applications.
This work presents the development of a 3-DoF leg with series and parallel compliant actuation. Series-elastic main actuators are combined with parallel high efficiency energy storage branches, to substantially improve energy efficiency.
This paper describes a novel tendon driven three-finger under-actuated hand, which demonstrates balanced dexterous finger manipulation and powerful grasping of common objects.
This paper presentes the overview work of Team ZJUNlict (Championship of 2014 Small Size Leauge) in 2014 RoboCup.